陈尚杰: 西南大学基础数学专业毕业,获博士学位,九游会ag真人官网教师。男,1976年5月生,重庆人,副教授,历任九游会ag真人官网学院讲师、副教授,主要研究方向为非线性泛函分析及其应用。先后在SCI源期刊上以第一作者发表论文10篇;主持重庆市科委自然科学基金两项,重庆市教委研究项目一项。
教育经历:
1.2000.07 西南师范大学数学教育专业,获理学学士学位。
2.2003.06 西南师范大学基础数学专业, 获理学硕士学位。
3.2010.06 西南大学基础数学专业, 获理学博士学位。
工作经历:
2010.07月至今 九游会ag真人官网任教。
研究方向:
非线性泛函分析及其应用。
负责或参加的研究项目:
1.2016.07-2019.06,椭圆型Kirchhoff方程解的存在性研究,经费:2.5万元,主持。
2.2012.09-2015.08,,集中紧性原理在无界区域上的偏微分方程中的应用,经费:2.5万元,主持。
部分论文、著作、成果:
1.Shang-Jie Chen(陈尚杰), Lin Li,Infinitely many large energy solutions for the Schrödinger–Poisson system with concave and convex nonlinearities,Applied Mathematics Letters, Volume 112, February 2021, 106789.
2.Chen, Shang-Jie(陈尚杰); Li, Lin. Infinitely many solutions for Klein-Gordon-Maxwell system with potentials vanishing at infinity. Z. Anal. Anwend. 37 (2018), no. 1, 39--50.
3.Chen, Shang-Jie(陈尚杰); Song, Shu-Zhi. The existence of multiple solutions for the Klein-Gordon equation with concave and convex nonlinearities coupled with Born-Infeld theory on R3. Nonlinear Anal. Real World Appl. 38 (2017), 78--95.
4.Chen, Shang-Jie(陈尚杰); Song, Shu-Zhi. Multiple solutions for nonhomogeneous Klein-Gordon-Maxwell equations on R3. Nonlinear Anal. Real World Appl. 22 (2015), 259--271.
5.Chen, Shang-Jie(陈尚杰); Li, Lin. Multiple solutions for the nonhomogeneous Klein-Gordon equation coupled with Born-Infeld theory on R3. J. Math. Anal. Appl. 400 (2013), no. 2, 517--524.
6.Chen, Shang-Jie(陈尚杰); Li, Lin. Multiple solutions for the nonhomogeneous Kirchhoff equation on RN. Nonlinear Anal. Real World Appl. 14 (2013), no. 3, 1477--1486.
7.Chen, Shang-Jie(陈尚杰); Tang, Chun-Lei. Multiple solutions for nonhomogeneous Schrödinger-Maxwell and Klein-Gordon-Maxwell equations on R3. NoDEA Nonlinear Differential Equations Appl. 17 (2010), no. 5, 559--574.
8.Chen, Shang-Jie(陈尚杰); Tang, Chun-Lei. High energy solutions for the superlinear Schrödinger-Maxwell equations. Nonlinear Anal. 71 (2009), no. 10, 4927--4934.
9.Chen, Shang-Jie(陈尚杰); Tang, Chun-Lei. Multiple periodic solutions for superquadratic first-order discrete Hamiltonian systems. Appl. Math. Comput. 208 (2009), no. 2, 495--500.
10.Chen, Shang-Jie(陈尚杰); Tang, Chun-Lei. Periodic and subharmonic solutions of a class of superquadratic Hamiltonian systems. J. Math. Anal. Appl. 297 (2004), no. 1, 267--284.